241 research outputs found

    Cloud condensation nuclei activity, closure, and droplet growth kinetics of Houston aerosol during the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS)

    Get PDF
    In situ cloud condensation nuclei (CCN) measurements were obtained in the boundary layer over Houston, Texas, during the 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) campaign onboard the CIRPAS Twin Otter. Polluted air masses in and out of cloudy regions were sampled for a total of 22 flights, with CCN measurements obtained for 17 of these flights. In this paper, we focus on CCN closure during two flights, within and downwind of the Houston regional plume and over the Houston Ship Channel. During both flights, air was sampled with particle concentrations exceeding 25,000 cm^(−3) and CCN concentrations exceeding 10,000 cm^(−3). CCN closure is evaluated by comparing measured concentrations with those predicted on the basis of measured aerosol size distributions and aerosol mass spectrometer particle composition. Different assumptions concerning the internally mixed chemical composition result in average CCN overprediction ranging from 3% to 36% (based on a linear fit). It is hypothesized that the externally mixed fraction of the aerosol contributes much of the CCN closure scatter, while the internally mixed fraction largely controls the overprediction bias. On the basis of the droplet sizes of activated CCN, organics do not seem to impact, on average, the CCN activation kinetics

    Wnt16 Is Associated with Age-Related Bone Loss and Estrogen Withdrawal in Murine Bone

    Get PDF
    Genome Wide Association Studies suggest that Wnt16 is an important contributor to the mechanisms controlling bone mineral density, cortical thickness, bone strength and ultimately fracture risk. Wnt16 acts on osteoblasts and osteoclasts and, in cortical bone, is predominantly derived from osteoblasts. This led us to hypothesize that low bone mass would be associated with low levels of Wnt16 expression and that Wnt16 expression would be increased by anabolic factors, including mechanical loading. We therefore investigated Wnt16 expression in the context of ageing, mechanical loading and unloading, estrogen deficiency and replacement, and estrogen receptor α (ERα) depletion. Quantitative real time PCR showed that Wnt16 mRNA expression was lower in cortical bone and marrow of aged compared to young female mice. Neither increased nor decreased (by disuse) mechanical loading altered Wnt16 expression in young female mice, although Wnt16 expression was decreased following ovariectomy. Both 17β-estradiol and the Selective Estrogen Receptor Modulator Tamoxifen increased Wnt16 expression relative to ovariectomy. Wnt16 and ERβ expression were increased in female ERα-/- mice when compared to Wild Type. We also addressed potential effects of gender on Wnt16 expression and while the expression was lower in the cortical bone of aged males as in females, it was higher in male bone marrow of aged mice compared to young. In the kidney, which we used as a non-bone reference tissue, Wnt16 expression was unaffected by age in either males or females. In summary, age, and its associated bone loss, is associated with low levels of Wnt16 expression whereas bone loss associated with disuse has no effect on Wnt16 expression. In the artificially loaded mouse tibia we observed no loading-related up-regulation of Wnt16 expression but provide evidence that its expression is influenced by estrogen receptor signaling. These findings suggest that while Wnt16 is not an obligatory contributor to regulation of bone mass per se, it potentially plays a role in influencing pathways associated with regulation of bone mass during ageing and estrogen withdrawal

    Ice Nucleation and Dehydration in the Tropical Tropopause Layer

    Get PDF
    Optically thin cirrus near the tropical tropopause regulate the humidity of air entering the stratosphere, which in turn has a strong influence on the Earth's radiation budget and climate. Recent highaltitude, unmanned aircraft measurements provide evidence for two distinct classes of cirrus formed in the tropical tropopause region: (i) vertically extensive cirrus with low ice number concentrations, low extinctions, and large supersaturations (up to approx. 70%) with respect to ice; and (ii) vertically thin cirrus layers with much higher ice concentrations that effectively deplete the vapor in excess of saturation. The persistent supersaturation in the former class of cirrus is consistent with the long time-scales (several hours or longer) for quenching of vapor in excess of saturation given the low ice concentrations and cold tropical tropopause temperatures. The low-concentration clouds are likely formed on a background population of insoluble particles with concentrations less than 100 L1 (often less than 20 L1), whereas the high ice concentration layers (with concentrations up to 10,000 L1) can only be produced by homogeneous freezing of an abundant population of aqueous aerosols. These measurements, along with past high-altitude aircraft measurements, indicate that the low-concentration cirrus occur frequently in the tropical tropopause region, whereas the high-concentration cirrus occur infrequently. The predominance of the low-concentration clouds means cirrus near the tropical tropopause may typically allow entry of air into the stratosphere with as much as approx. 1.7 times the ice saturation mixing ratio

    Generative AI Perceptions: A Survey to Measure the Perceptions of Faculty, Staff, and Students on Generative AI Tools in Academia

    Get PDF
    ChatGPT is a natural language processing tool that can engage in human-like conversations and generate coherent and contextually relevant responses to various prompts. ChatGPT is capable of understanding natural text that is input by a user and generating appropriate responses in various forms. This tool represents a major step in how humans are interacting with technology. This paper specifically focuses on how ChatGPT is revolutionizing the realm of engineering education and the relationship between technology, students, and faculty and staff. Because this tool is quickly changing and improving with the potential for even greater future capability, it is a critical time to collect pertinent data. A survey was created to measure the effects of ChatGPT on students, faculty, and staff. This survey is shared as a Texas A&M University technical report to allow other universities and entities to use this survey and measure the effects elsewhere

    Quantifying the Amount of Ice in Cold Tropical Cirrus Clouds

    Get PDF
    How much ice is there in the Tropical Tropopause layer, globally? How does one begin to answer that question? Clouds are currently the largest source of uncertainty in climate models, and the ice water content (IWC) of cold cirrus clouds is needed to understand the total water and radiation budgets of the upper troposphere and lower stratosphere (UT/LS). The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, originally a "pathfinder" mission only expected to last for three years, has now been operational for more than eight years. Lidar data from CALIPSO can provide information about how IWC is vertically distributed in the UT/LS, and about inter-annual variability and seasonal changes in cloud ice. However, cloud IWC is difficult to measure accurately with either remote or in situ instruments because IWC from cold cirrus clouds is derived from the particle cross-sectional area or visible extinction coefficient. Assumptions must be made about the relationship between the area, volume and density of ice particles with various crystal habits. Recently there have been numerous aircraft field campaigns providing detailed information about cirrus ice water content from cloud probes. This presentation evaluates the assumptions made when creating the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) global IWC data set, using recently reanalyzed aircraft particle probe measurements of very cold, thin TTL cirrus from the 2006 CR-AVE

    Rapid Microsatellite Identification from Illumina Paired-End Genomic Sequencing in Two Birds and a Snake

    Get PDF
    Identification of microsatellites, or simple sequence repeats (SSRs), can be a time-consuming and costly investment requiring enrichment, cloning, and sequencing of candidate loci. Recently, however, high throughput sequencing (with or without prior enrichment for specific SSR loci) has been utilized to identify SSR loci. The direct “Seq-to-SSR” approach has an advantage over enrichment-based strategies in that it does not require a priori selection of particular motifs, or prior knowledge of genomic SSR content. It has been more expensive per SSR locus recovered, however, particularly for genomes with few SSR loci, such as bird genomes. The longer but relatively more expensive 454 reads have been preferred over less expensive Illumina reads. Here, we use Illumina paired-end sequence data to identify potentially amplifiable SSR loci (PALs) from a snake (the Burmese python, Python molurus bivittatus), and directly compare these results to those from 454 data. We also compare the python results to results from Illumina sequencing of two bird genomes (Gunnison Sage-grouse, Centrocercus minimus, and Clark's Nutcracker, Nucifraga columbiana), which have considerably fewer SSRs than the python. We show that direct Illumina Seq-to-SSR can identify and characterize thousands of potentially amplifiable SSR loci for as little as $10 per sample – a fraction of the cost of 454 sequencing. Given that Illumina Seq-to-SSR is effective, inexpensive, and reliable even for species such as birds that have few SSR loci, it seems that there are now few situations for which prior hybridization is justifiable
    corecore